_ RAD-A16S5 336 METRICS FOR ADA PACKAGES: AN INITIAL STUDV(U) MARVLAND 14
UNIV COLLEGE PARK DEPT OF COMPUTER SC
GANNON ET AL. 1983 NO9014-82-K-622
UNCLASSIFIED F/G 972

O 2SRTIAY Ie A,
N f':-u"-: ".\"#

»°
L

LR,

ks

Accession For

NTIS GRAxI
DTIC T3

Metrics for Ada Packages: An Initial Study

¥ YOSV | YEdd

v,
s

J.D. Gannon, E.E. Katz, and V.R. Basil

L
ke,
e

AD-A165 336

Department of Computer Sclence
Unlverslty of Maryland
College Park, Maryland 20742

DTIC

™ELECTE
o MAR 0 6 1986 \
; 2) ; \w-»k ;,':::‘::,
. .:'.'.'-',"
E r;,-_'}
Abstract :,_.:;.}‘
> Many novel features of Ada (e.g., packages, generlcs, tasking, and exception handling) e
were Included In the language to Improve readabliity, ald modification, or encourage N
reusabliity. Since they have not been avallable In other widely used languages, packages t}:.‘;:,

present programmers with a falrly formidable learning task. We studled four first-time
Ada programmers as they developed a ground-support satellite system. Metrics are
presented which characterize thelr use of Ada packages, Indicating where program struc-
ture may make changes difficult, and suggesting how the structure may be improved.
Our findings suggest that a good background In the software englneering practlces sup-
ported by Ada Is necessary to learn to use the features of the language -- simply teach-
Ing professional programmers Ada Is not enough,.

COPY

E.‘..‘JJ Keywords: Ada, packages, deslgn metrics, case studles

~vem— :‘.‘ .
| vhae .:_. y
D B
h - L i)
| This work is supported by the Office of Naval Research and the Ada Joint Program Office under grant NOOO14-82-1K-0225, L
— ~
Ada Is a registered trademark of the U.S. Department of Defense - AJPO. :.-\J‘
N
..... S
‘ This drun :*:J
" -, ¢
for pub: Q) ; :*:‘
! distrih it°c 8 6 Py ¢ i,

s, -',"- ’
c' i'
et

« e L R A T T e Y e e Tmtatet e
A '-\. . o e e e . ARSI N B
.
LY

e e
BRI AL AT AR NEAEIY X L
o EIEINTIP 38D & S PRSI IS RTINS WS IR

1. Introduction

When programmers begln to learn a new language, they often start by using those
features of the language that appeared In other languages they already know. For
example, a study of 102,397 statements In PL/I programs turned up 7385 DO state-
ments, but only 11 DO WHILE statements [Elshoff 768]. Elshoff concluded:

“The most basic, general form of the DO statement is not used. The fact that the pro-
grammers do not know of its existence is a primary reason.”

Error messages assoclated with novel constructs often provoke lnapproprlate responses.
In a language In which programmers had to explicitly request the right to access
identiflers declared In outer unlts of scope Instead of inheriting them automatically
[Gannon and Horning 75], programmers responded to messages about lack of access to
an ldentlifler by making all possible identiflers visible.

2. Modules

Modules allow programmers to group related data and/or procedures and to limit
the amount of Information that Is accesslble to the rest of the program [Parnas 71].
Splitting a program Into modules should localize the effects of program changes to
correct errors or to Improve the implementation (l.e., making It more robust or more
efficlent). In addition, since modules are usually self-contained, they can be reused from
project to project. The designers of Ada [Ichblah et al. 79] recognlized three major uses
for modules:

(1) A named collection of declaratlons that makes a group of types and varlables avall-
able much like a FORTRAN common block.

(2) A group of related subprograms that provides a llbrary facility.

(3) An encapsulated data type that provides the names of the type and its operations,
but hldes the detalls of ti.e representation of objlects of the type and of the Imple-
mentation of the type's operations.

While the first two uses are famlllar to many programmers, the third use 1s not sup-
ported by many commonly-used programming languages. Strong syntactic clues are
avallable to help programmers declde what oblects comprise the first two kinds of
modules (e.g., all types and constants, a collectlon of global varlables, or a set of utllity
routines), but fewer hints are avallable to ald In grouplng objects In problem-orlented
terms [Ledgard 85].

One of the lessons of structured programming Is that simply providing users with
“goto-less” programming languages does not result 1n structured programs belng wrltten.
Users need to understand the 1deas of top-down development and stepwlse refinement to
produce structured programs. Our hypothesls was that a simllar phenomenon was likely
to occur with Ada packages. Users who were unfamillar with the ldeas of information
hiding and data abstraction were unllkely to use Ada packages to wrlte programs that
exhibited these propertles. Thus, the need for tralning at the professlonal level would
likely be for software deslgn technlques, not just the Ada programming language.

e s T s e el e « . .
TR L e T
L. RS e P S

i
4,
[]

§,

57
L
pt N8 e 0 g

.

.,.,,...
3

T
L]
- S
£

XN,

»
f

[]

A
-

>

L]
Y

ALY
é,'f s

o]
4
'

/

o ow e
* 2
el

e 'y
PRATIR)

e
"y

e,
% %
A

Tt dEl SR I 2]
Pt

: }j.ﬁj'

" - - W - O '-..'.'.'v. . - . - -
R A P S LA P Pl S TR T T S Rt S Il W PO L A AL A

3. Ada Packages and Units

In Ada, modules are Implemented as packages. A package consists of two parts: a

speclficatlon and a body. The speclfication, which contains declarations, s further gf-"._.-
divided Into vislble and private parts. Identlflers declared In the visible part can be é:fﬁ:‘_":
used by other units, while those declared In the prilvate part can only be used In the (::.};f;-f

package body. For example, the following package speclficatlon exports the name of the ~1ad
type Ratlonal with operations /, +, etc. The representatlon of a ratlonal number by a -
record contalning two Integers Is hidden from users In a private part.

package Ratlonal Is -- specificatlon part
-- vislble part
type Ratlonal 1s private;
function “/” (X,Y: integer) return Ratlonal; -- to construct a ratlonal

i function “+" (X,Y: Ratlonal) return Ratlonal;
: private

g type Ratlonal Is

S record

::' Numerator, Denominator: integer;

- end record;

o end;

The package body contalns Implementations of operatlons and declaratlons of types
whose names appear In the corresponding speclfication part. Nothing declared in the
package body Is vislble outslde the package. However, package bodles and specifications
can use Information from other packages’ specifications.

Packages are not required to hide the representation of data. The speclfication for
Ratlonal numbers above could have been declared as follows.

package Ratlonal Is -- specification part

-- visible part
type Ratlonal Is

record

Numerator, Denominator: integer;

end record;
functlon “/" (X,Y: Integer) return Rational; -- to construct a ratlonal
functlon “+" (X,Y: Ratlonal) return Ratlonal;

. end;

However, If the representation Is deflned In the vislble part of the speclficatlon, any
other units which can see the package can manlpulate the representation of the data
(e.g., may access the Numerator or Denominator fleld of any Ratlonal obJect). Changes
in the representation, therefore, might have a tremendous effect on those untts.

-3-

'''''''' . I B - - - . M - - . ° o . LR - - - - - RS -t A‘- . . -
------ L RO L PR LR PR T S PAE SR PR AL VT Nt VR TR T W AT A Y I e R S IR R P AN
OIS I B N S R R R S P A AL e e

. ¥ s L, WA WAL A N TP S P S S I R S et T, Jo

el - Al iy Nfrr Ry YT -$.Ag PAagd VoL VK AKX LWL A Py £ig frig CRENE WG SR RE NG VLY Sak LA " tat fae be

W,

PG LA

Py

Encapsulating data types In packages allows the definltlon of objects and thelr
assoclated operatlons. Hiding the representation of the data eilther In the prlvate part of
the package specificatlon or In the package body llmlts the effects of changes In the
representation. If 1t is In the prlvate part, changing the representation can necesslitate
recompllation of units using the package. If It Is In the body, changes wlll not force
recompllation, but the implementation may be more difficult.

< =Tl |

Ada programs are collections of compllatlon units: pre-defilned unlts, package

b specifications, and others (l.e., subprogram, package, and task bodles). Where a package

i1s defilned 1s another Important decislon. A package might be generally avallable to any

other unlt in the environment. It may be deflned In a Iibrary restricted to a project or

o group which will limit the package avallabllity to a subset of units. The author of a

package also has the optlon of definlng packages within other unlts 1imiting the scope to

- teh defining unlt. By choosing an appropriate locatlon for a package's definition, the
[-. package’s author can Iimit the scope of possible changes.

The flnal aspect of packages examined In this paper concerns the visibllity of pack-
e, ages within other units. A package iIs visible in a unit If one of the following occurs.
First, the package Is named In a with clause at the beginning of the unit. Second, the
package Is vislible In the unlt's parent unlt. Items declared In the package can be made
directly vislbie with a use clause In the same manner. However, 1n thls paper, we con-
centrate on general visiblilty as opposed to direct visiblllty. Reduclng package visibility
- should lower the vocabulary of the unit. Studles [Elshoff 76] show that this might
increase the comprehensibliity of the unit. In addltlon, 1t would lower the number of

(i)
e
AR

» possible bindings [Basill and Turner 75] between the unit and the package. ..;:._-: '

4‘: \rf':r:':r

y 4. Package Metrics :j‘_\j

$: Metrics based on packages can be used to characterize the structure of a program. ‘:;;Z:;:j
They can also Indlcate where problems may occur If the representations of data objects 3

or the Implementations of operatlons change. Most Importantly, they provide feedback .:{._.j\:-

::_' to programmers about the effects of thelr definitlon and use of packages. A

';: There are many simple characterizing metrics that provide a sketch of the system:

e the number of packages declared, and the number of generlc packages and the number t-};-}:__

& of times each Is Instantlated. In additlon to these simple metrics, two more elaborate T

. metrics are discussed below.

- 4.1. Package Visibility -

YO One means of measuring packages Is to look at thelr visibllity to other units in the .:_'.
system. We examline two verslons of a system - the current one and one where the with =

- clauses may have been moved to lower the visibility.

= 4.1.1. Definitions

.. Each package has the following visibllity measures:

i (1) wused: number of units where Informatlon from the package Is accessed or changed.

- -4-

.. IR

.. AN R Y R R L S

oy uwxmhwmm.m ORI .5.}.. RN

RGN N St d 7 Ay Ty tpl i - o Al ol S ls R L o T T T N T R RS LIF=F Ty~ I I X e ey

(2) curreni: number of units where the package Is currently visible.

_ (3) available: number of units where the package could be made visible by adding a
- with clause, glven the current unlt structure.

¢ (4) proposed: number of units where the package Is visible given the current unlt struc-
’ ture and the with clauses in thelr lowest possible positions.

Only those units that are part of the current system are Included In our measures. In
additlon, package bodles and thelr subunlts are not Included In the measures for that
package because they are part of Its Implementatlon. These values can be computed
during the deslgn of a system or after the system has been completed.

e e s
e

b 4.1.2. Examples
Figures 1 and 2 lllustrate three views of a small system contalning the following

>
: components: package P defining a procedure X; and procedure A defining subunits B, C,
»'.:: and D. In Figure 1, there Is a with clause for P In A; therefore, P Is currently visible in
-~ four units. (X Is not Included In these measures because 1t Is a subunlt of P.) However,
P.X I1s only used In two unlts, B and D. In Figure 2, we propose moving the with clause
from A to B and D, limiting the visibllity of P to three unlts. For a system ln which C
I1s a subunlt of B, that Is the lowest locatlon for the with clauses.
3 4.1.3. Visibility Ratios
-, Three Interesting visibllity ratlos for the systems In Filgures 1 and 2 are given in
Table 1.
l:' Table 1: Ratlos of Visibllity Vectors
; Full Name Notatlon | (1) (2)
X used/avallable UA(P) {05 |05
used/proposed UP(P) 0.7 | 1.0
‘ proposed/current PC(P) 08 | 1.0
’ Each of these ratlos has an upper bound of one and a lower bound of zero. The
.- ratlo of unlts In which a package Is accessed to those In which It could be made avall-

able (UA) 1s a measure of the percelved generallty of the package. If UA(P) is high,
: package P Is only avallable where necessary; therefore, the deslgners may have made It
) for a specific purpose. However, If UA(P) Is low (l.e., P Is avallable much more widely
. than Is necessary), the deslgners may belleve that the package Is generally useful.

-
I; : The ratlo of the number of unlts In which the package Is accessed to those where it
must be made avallable (UP) measures excess visibility for the current system structure.
- For example, In Figure 2, P's visibllity In C cannot be ellminated as long as C Is a
':'_ subunlt of B. UP can be used to compare different system structures In which excess
o visibliity has been removed.
'_. Finally, the ratlo of the number of units in which a package must be visible to ,
. awh
T those In which 1t Is vislble measures the design decision to minimize visibllity. If PC(P)
" 1s low, P Is consldered as global data or operations even If a less visible arrangement 1s S
. avallable. If PC(P) i1s high, a declslon might have been made to limit the visibllity of P. :?'_-_':j.::
¥ R
S
\" - 5 - .q‘i.:\‘\
: L.
.'.‘ -.:_\:,'.
2 R
Z'ﬂ"s RPN N L e T Ny ST R AT R NN I T N SN O 1

e O TS AT TR T TR T TR TR T T AN U T N LR TR N T

Had the design goal been minimizing the visibllity of packages used, the second
subunit structure would be better. The ratlos should be used to indlcate which pack-
ages should be examined more closely, not to replace the need to understand why design
decislons have been made.

4.2. Component Accesses

When selectlon operations are applled to composite obJects outside package bodles,
detalls of data representatlon are spread throughout the program. Distributing
representation informatlon rather than centralizing it In private parts of package
specifications makes programs more difficult to change. If the type of the composite
object Is not defined locally, changes In representation to enhance program capabllity or
efliclency could Involve many statements In many compllation units.

For example, consider the Ada fragment below contalning the visible type T2 hav-
Ing two array components (A and B) with ldentical numbers of elements with the same
type (T).

~ original representation

type T1 1s array (1..N) of T;
type T2 Is
record
A: T1;
B: T1;

end record;

If we Intreduced a new type, NewType, a record of two elements of type T, that permit-
ted the two array components of the previous example to be combined Into a single
component (C) In T2:

A M

& oA 2

.:‘.

5%
-J .

ol
»
a

L
&,

EAY

.

>
[
»
[

.13

o AU
« :'.":'l

- o .b.' v. -1" -!‘ ..‘ .-' ..‘ .--..-“ '.. .-. .-' ..' ~-- .n‘ "o .\‘ = .‘-'..-' T ..'.~-. ---l" .‘~ "~ - "lw.\
1\"1‘1“ N AT TN N e S S A W T S R S

- Lo A S R R R A e A . et et at

;
i
i -- new representation
v N: constant Integer := ...;
N type NewType Is
: record
\ A: T
I B: T;
end record;
: type T1 Is array (1..N) of NewType;
. type T2 1s
v record
. C: T1;
"-

.
1

end record:

then all references to the A and B components of type T2 varlables (e.g., V) would have
to be changed.

ST AT

X -- original representation -- New representation
V.A(...) V.C(...).A
V.B(...) vV.C(...).B

The following measures vlew component accesses from the user's perspective. The
ratio of component accesses to objJects with non-locally deflned data types to llnes of
| text can be used to measure the code’s reslstance to changes. The ratlo of component
. accesses to objects with non-package deflned data types to llnes of text can be used as
l an Indlcatlon that more data might be packaged. As In the visibllity measures, subunilts
y of a package are considered part of the package; therefore, any accesses In them to the
- enclosing package are consldered local.

Another view of component accesses Is from the package’s perspectlve. If com-
ponents of a package's objects or types are accessed frequently or in many other units,
changes to the package may affect all of those units. If the representatlon Is avallable
< but never or rarely used, changing 1t might be easler although encapsulation may not be
as necessary. Measures of Interest here are the number of component accesses made to
objects or types deflned by the package and the number of units In which those accesses

::: occur.

2

5 5. A Case Study

N The visibllity and component access metrics described In the previous sectlon have
: been applled to a subset of an exlsting ground-support system for a satelllte, which was
~ redesigned and Implemented In Ada [Basll) et al. 82], [Baslll et al. 84], [Basll et al. 85].
! With the help of the original deslgners of the system, requirements were developed for a
\,‘ subset system that included an Interactlve operator Interface, graphlc output routlnes,
v, and concurrent telemetry monltoring.

)

Y,

‘.

)

'.. - 7 -

:

e M e el
L O S UL i
- ta®a‘'al

o e .
TR T TR T)
PR R R XS A

g i g e L Vol 20 ‘Rt) gl Koe 4 e T Ty T T N LIRS gt ¢ iYLV X AU N i R ie AT B

computer sclence graduate who had no Industrial experlence. He was famlllar with Pas-
cal In additlon to all the languages with which the senlor programmer was famillar. The
programmer/llibrarlan was a novice programmer who had taken a single course In FOR-
TRAN programming.

A et i)

Since none of the programmers was famlllar with Ada, a one-month tralning period
preceded the start of the project. They viewed fifteen hours of vldeotaped lectures
glven by Ichbiah, Firth, and Barnes. A six-day In-house course by a consultant was
spread over a perlod of weeks to allow team members to complete asslgnments, the last
of which was a 500-line team projJect. Another half-day was spent reviewing the pro-
gramming practices they were expected to use: deslgn and code walkthroughs and struc-
tured programming. The results from this project suggest that this tralnlng was not
sufflclent given the team's background. [Basill et al. 85]

1k IO
At
_ N
!\'-' 8
%
A
e
i W
: :
" ‘Al
» This was an early Ada development to examine the effect of using Ada n an Indus- Y .‘
trial environment. The four programmers had dlverse backgrounds. The lead program- g_._,
mer had substantlal Industrial experlence In the application area and was fluent in FOR- NN
TRAN and assembler languages. The senlor programmer had less experlence in the ,‘:
applicatlon area, but wider exposure to languages (COBOL, PL/I, Lisp, ALGOL, and :.:'-;.:-’.
SNOBOL as well as FORTRAN and assembler). The Junlor programmer was a recent W34
~
-

v
..

" e s F
R (SPLORERIARN

The bulk of the development of this system was done with the Ada/Ed Interpreter
between February and December 1982. Some testlng was done on the ROLM compller
in the summer of 1983. The project was not completed for a number of reasons. The
most Important of those reasons was the lack of production-quality compllers. The

.-".4'-.‘ . '., '.. ", R

structure of the system as well as the package use can be determlned at thils stage, how- :}:
v, ever. s i
-, AR
A, ".?:'\-..
2 5.1. The Program :::.;-r"’
. . ta
. The final program contalned 4375 text llnes (excluding comments and blank lines) '
- of Ada. The system contalned 11 packages contalned 1n 19 units and a maln program ;
'_:-' with 29 subunilts. Some attempts were made to decompose the functions of the subun-

its; therefore, as many as four nesting levels of subunits are used in the system. Flgure

:'.;’_ 3 shows the structure of the system. Of the eleven packages deflned, one's body was

Ev not written and it was never used.

_? The packages were of four types: v

Z:lj (1) 2 common blocks exporting only definitions,

. (2) 3 libraries exporting only functlons,

'. (3) 4 encapsulated data types exporting private type deflnitions and operatlons, and

—" (4) 2 data types which exported the representation of the type.

:-:: While these numbers seem to Indlicate that the package feature was used appropriately,

:j closer examlination refutes this conclusion. Of the four packages definlng encapsulated

< data tyvpes, two were device drivers, another was a mathematlcal function, and the
remalning package deflnitlon was nelther completed nor used. Device drivers and

e mathematical llbrarles are common modules In existing software systems -- no new fully

) encapsulated types were defined.

4

:'-:

e -8-

<]

‘.::' [
B
.

»

.
-
.

et s M s"e"v"e"n s NS FFV T I ('—‘Waﬂ‘r

'-- r-

AR R N

A TAK

{ SR

3 TARAAAIS LY

. d
-

Five of the eleven packages were generle, but each was Instantiated only once. The
generlc parameters were primarily ranges for arrays and precislon for real numbers. The
programmers used the standard sequentlal_lo package In varlous Instantlations, but they
only used one Instantlation for each of the generic packages they deflned. Of those flve
instantlations, two were In one other package, and three were In the maln program.
The programmers seemed to vlew packages as global entltles.

A more alarming dlscovery was that only two of the team members (those with
experience In the widest varlety of programming languages) defined any packages. The
other two team members used the conventlonal packages provided by the other two pro- e
grammers (l.e., the device drivers and the mathematlcal subroutines) and the standard " ‘_'-j:
Ada packages but wrote none of thelr own. Even though the requirements specifled
that an antenna beam-forming network had binary tree-like connectlvity and a blnary
tree package specificatlon was written, one programmer wrote some different Internal
functions that manlpulated a different representation Instead of providing a package
body to match the specification.

6. Package Visibility

An examination of the visibllity of the packages within the other units Indicates
that the system structure dld not minlmlize package visibility. The vislblllty ratlos for
the 10 packages which were used are given In Table 2.

Table 2: Package Visibility Vectors and Ratlos

Package | Used | Proposed Current | Avallable UP UA | PC
1 9 13 30 44 0.7 0.2 0.4
2 4 9 33 45 0.4 0.1 0.3
3 20 30 32 46 0.7 0.4 0.9
4 1 31 33 47 0.0 0.0 0.9
5 11 30 30 47 0.4 0.2 1.0
6 4] 30 47 0.4 0.1 0.3
7 7 13 30 47 0.5 0.1 0.4
8 3 3 3 48 1.0 0.0 1.0
9 1 1 2 48 1.0 0.0 Q.5

10 1 1 1 48 1.0 0.0 1.0

Although the maln program only used two packages, slx of the nine packages were
named In both with and use clauses there. Most of the packages were viewed as global
data or functions that were accessible everywhere. Thils view Is conslstent with the
FORTRAN style of programming most famillar to the programmers.

Note that the UA column is falrly low for all the packages except package 3. Pack-
age 3 contains type deflnltlons and constants used throughout the system. The low
values of UA suggest that some of the packages could be deflned locally to groups of
units,

The system structure allows reasonable visibllity for many of the packages, as Indl-
cated In the UP column. It Is possible to make packages &, 9, and 10 visible only In the

[AR
Rlelela e

s otahy

=

e .

packages which use them. Packages 1 and 3 do not have an Inordlnate amount of visi-
bility. However, packages 2, 4, 5, 6, and 7 would probably beneflt from a change In the
subunlt structure If 1t were possible.

Finally, the PC column demonstrates the programmers’ view of the role of pzck-
ages In the system. Flve of the packages were glven the appropriate visibllity In the orl-
ginal system; however, the rest of the packages are visible much more than they need to
be. This Is yet another example of the programmers’ global data approach to package
definition.

7. Component Accesses

Table 3 summarizes non-local component accesses for each programmer based on
all modules written by the programmer. The total number of component accesses, the
accesses to packaged data, and the accesses to non-packaged data are each Included.

These metrics show that on average more than one of every ten llnes (0.11) of text
contalned a reference to a component of an objJect with an externally deflned type.
Roughly twice as many references are made to packaged data as are made to unpack-
aged data which suggests that the more complex data types mlght have been packaged

but not hidden. However, programmer 3 made more references to components of
unpackaged data.

Table 4 summarizes the component accesses by package for selected packages.
Note that package 3 has 217 of the packaged component accesses. This Is not surprising
consldering that the package contalns global data and types. The majority of the
remalning packaged component accesses were to package 7 which provides some types
shared by several related unilts. If the data In these two packages were hldden, the
number of packaged component accesses and the effect of changes to the packages

would be greatly diminished. However, changes to the representation at this time would
affect many other units.

Table 3: Component Accesses by Programmer

Metrlc Programmer
1 2 3 4 Total

Text Lines 708 1904 1648 117 4375
Component Accesses

all data 159 171 140 0 470

only packaged data 120 124 61 0 305

excluding packaged data 39 47 79 0 165
Accesses per Text Line

all data 0.23 0.09 0.08 0.00 0.11

only packaged data 0.17 0.08 0.0 0.00 0.07

excluding packaged data | 0.06 0.02 0.05 0.00 0.03

- 10 -

e .-- . 'p o '.. -~ PRI et o “d"'- "h - '_. ’-v T T R Y ‘.- '.‘ '..- ‘-n ‘~- Y. +
DSOS AP N P R e A R W _‘.1_4\ M
A!A!-a‘ -.‘.‘-“d-,’_-_LLL._‘_‘_‘_‘_LLLM

AN e Nt e e
2w e S AR
R AP P L I PR SRR S

R N --.- ..i..i ...- b"- '>~‘ .I -
A S S A S NN

Table 4: Component Accesses by Package

Package | # of Unlts | # of Accesses
3 13 217
2 1 0
8 2 14
7 6 46
5 1 19

The values In Table 3 Indlcate that the first programmer’s code should be relatively
difficult to change since about one of every flve llnes contalned a component access. We
selected one of thls programmer's modules and made the trivial modificatlon discussed
in Sectlon 4.2. To make this change In the representation, eleven program changes
[Dunsmore and Gannon 77] were required In the module we selected. In addltlon, ten
program changes were needed In five other modules which encompassed two of the four
major subsystems In the program. The record type contalning these components could
have been encapsulated In a package definitlon. Then, the same change In the represen-
tatlon would requlre a change In the prlvate part of the package speclficatlons and a
total of four program changes In two functions of the package body. No other modules
would be aflfected.

8. Conclusions

The case study demonstrates what might happen when programmers who are
experlenced In an appllcatlon area but lack tralnlng In modern software development
practices begin to use Ada. Desplte tralning eflorts that are simllar to those that are
llkely to be used In a typlcal Industrlal setting, only traditional modules llke device
drivers and mathematlical llbrarles were deflned. Encapsulated types were declared only
by programmers with the widest exposure to different languages, but even the program-
mers’ prior success In working with these languages does not guarantee success with
Ada. A good background In the software englneering practices which Ada supports Is
) probably necessary to learn to use the full capabllitles of the features of the language --
-' simply teachlng professlonal programmers Ada Is not enough.

o Had the package metrics been applled durlng the case study. they mlght have
s helped the programmers better understand how to use packages. Package visIbility Is a
: rather crude metric that can be used durlng design to check that the deslgner's
approach to a system Is not simply to make all packages visible to all program units.
Lowering the visibllity wlill probably decrease the scope of any changes made to the
package.

However, even If package visibility Is restricted, packages may stlll export type
deflnltlons that permlit programmers to access the components of composite ohjects.
Program units that dlrectly access components of oblects are Ilkely to be difficult to
change.

A T N W W S W W, W WL oW LS e ® cm = = = vy -y

- FIRE
: AN
.-" f_‘(x-
i AL
! 2
- r:l’:-‘
S r"-‘.'d‘
oo o
\e Ny
* Metries which track the use of packages during system development treat the Padty
i symptoms and not the problem; however, we expect many early developments will have E

E these symptoms. These metrics and those described In [Hammons and Dobbs 83] may N
-~ help In the transition to using Ada eflectively. g

=

n

f‘\

Y 9. Acknowledgements -

N 5
i M.V. Zelkowitz, J.B. Balley, E. Krues! Balley, and S.B. Sheppard were the other 5

3 monltors of the case study and have contributed to the work reported here. o

g

i
LA
[

10. References .

[Basill and Turner 75]
V.R. Baslll and A.J. Turner. Iterative Enhancement: A Practlcal Technlque for E
Software Development. [EEE Trans. on Software Eng. SE-1, 4, 1975, pp. 390-396. -

[Basll et al. 82]
V. Baslll, J. Gannon, E. Katz, M. Zelkowltz, J. Balley, E. Krues], and S. Sheppard.
Monitoring an Ada software development project. Ada Letters II, 1, (July 1982),
1.58-1.61.

[Bastll et al. 84]
V. Baslil, S. Chang, J. Gannon, C. Loggia-Ramsey, E. Katz, N. Panlllio-Yap, M.
Zelkowlitz, J. Balley, E. Kruesl, and S. Sheppard. Monltoring an Ada software
development prolect. Ada Letters IV, I, (July/August 1984) 32-39.

o
'
0
»
»

BN

{Basili et al. 85) b~
V.R. Baslll, E.E. Katz, N.M. Panlillo-Yap, C.L. Ramsey, and S. Chang. Character- L
1zatlon of a Software Development in Ada. IEEE Computer. Vol. 18, No. 9, Sept. PO
1985, pp. 53-85. AN

[Dunsmore and Gannon 77] s
H.E. Dunsmore and J.D. Gannon. Experlmental Investigatlon of programmIing com- L.-

plexity. Proceedings of the ACM/NBS 16th Annual Technlcal Symposium, Galth-
ersburg, Md., (June 1977), 117-125. el
[Eishoff 76 :
J.L. Eishoff, An analysls of some commerclal PL/1 programs. JEEE Trans. on e
Software Eng. SE-2, 2, 1976, pp. 113-120. b

[Gannon and Hornlng 75]
J.D. Gannon and J.J. Hornlng. Language deslgn for programming rellabllity. [EEF
Trans. on Software Eng. SE-1, 2, 1975, pp. 179-191.

(Hammons and Dobbs 75] (-——
C. Ilammons and P. Dobbs. Coupling, coheslon. and Package Unlty in Ada. Ada
Letters IV, 8, (May-June 1985) pp. 19-59. ';::'::

[Ichbiah et al. 79) NG
J.D. Iehblah, J.G.P. Barnes, J.C. Hellard, B. Krieg-Bruckner, O. Roubine, and B.A. '_'_:'-.'
Wichman. Ratlonale for the design of the Ada programming language. SIGPLAN {_:_

Notices 14, 8, (Junc 1979), 8-1,2,

-12-

[Ledgard 85]

[Parnas 71]

o .
ate’a e

L

%yt

[

TN

.‘l\ l~

2 e

* oA

»

CAAS

' IO

i} "\- PRSI PRI
MO S AN S

ORI

.354.-

et

LIS

.y
O

e,

‘:_ S

-13-

H.L. Ledgard. Packages: a method for software decomposition. 1985.

D.L. Parnas. Informatlon distributlon aspects of design methodology.
North Holland Pub. Co., Amsterdam, {(1971), 339-344.

IFIP

71,

A
[
k]
.
[Ad
AR

: ‘!
5

,
iy
o, A

v "y
.
s
:

N
ol
bt
MYORY

.:'
i‘¢
o

[N

hp [55 EAORA el 2N L BE AR L AL T g S p b A SN SR SRR il Ak aid AR AR C AR A A e aen e T g dig T s fheoe s o s Banabet s s 2.0 o 1 4584 e 2 1.1;-7_;-.')
. bty
- T .

oSS,

‘}
‘l
)
¥
'|h
K package P 1s separate(A)
— procedure X; procedure B 1s
3 end P; procedure C Is separate;
=2 o — begin
e separate (P) el
s procedure X Is P.X;
i begin el
- ol end B;
- endX; e
s separate (A.B)
_Z: with P; procedure C Is
B procedure A is begin
- procedure B Is separate; ces}
:: procedure D Is separate; end C;
::‘ begip e
- sl separate (A)
o end A; procedure D Is
, begin
- P.X;

end D;

% 1 /N S
> X B D D!

j l ':q' .:J
) e
" 2] C

FIGURE 1: Global Vislbllity of Package P

p .
h ..' ." -" ."

¢
e

AT

-14 -

)
» o

P

LS B TR

SRR

ettt vy e >
L SCR SRR PR CC SR

package P Is
procedure X;
end P;

separate (P)
procedure X Is
begin

procedure A Is
procedure B Is separate;
procedure D 1s separate;
beglin

end A;

1 .a':l",] .,

RSN

>
L N

, 4
O}

A
VRS
X B
!

; C

SRR
PRI
PR

h]
] 'l. 'n_ ¢]

CRER
2"

“wty

G
P
RSO
«te’e’a’s

o

4‘
3

AR

| ANE

-15 -

AR YA G W 31, S Ay T L G T T 2 05 7 G s S A RN
P it P .. Y e L9 N . 4y g™ % L1 -

4

end D;

with P;

separate(A)

procedure B Is
procedure C Is separate;
begin

P.X;

separate (A.B)
procedure C is
begin

with P;
separate (A)
procedure D is
begin

P.X;

'

D

FIGURE 2: Llmlted Visiblllty of Package P

a2 2% g 4% "2t

{"(
>

2

27

P TY

AR

“y v v
[

v
Sl LA

1
I

1

»
Iy

-

W W A W R W VT W W P W i W o T D W Y T P T I Y e L OO K T A R TW Y U UN T Y S FY PO/~ Ty STV P R dand’s §°2)

= |
A

B
' .
V)

St NN TR e e e e CeTer

VAN YA S
e e s . NS [N

N XA AW NN ISR

Cth-! Dl]

A PP I R ‘
b, _ IR0 |
: .] O R W R
Lt ‘e’ b.- -.rw. ot -\

.
.- *u
L]

e
K
"

1
3

f

te

323

[]

23

i

-

2
AN 8",

o .
e

v -.’..._-
S e

Spudops

w1 A9 T&,EI AP

e

.~-.\;' L

» .

"

&

ot

o
Yt

ladsiq
uyxq

R

ox
sy

e

)

AR Nl I

£ l g

~

1€ Suor4 $3
-wiyaq ,

SR IAR S N

e g
T wiyaq

1€ a¢0“+_.:$01. u R MA x—:o

J'\Qﬁﬁ

WS Tenpy
&~ YN 4

g .
v

H

|

|
P

CICRBRRAY - "R AR Wt S R AP RARAA AR

